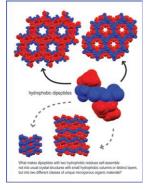

A labyrinth...

... mimicking the reaction pathways that govern the interconversion of complexes containing Pt-H, Pt-SH, and Pt-S fragments is depicted on the cover. The network of reactions has been established by the addition of controlled amounts of Na₂S or NaHS to the binuclear trihydride complex $[Pt_2(H)_2(\mu-H)(dppp)_2]ClO_4$ (dppp=1,3-bis(diphenylphosphanyl)propane) and by subsequent treatment of the resulting species with protons, hydride, hydroxide, or hydrogen sulfide ions. Further details are provided in the article by P. González-Duarte, A. Lledós et al. on page 1047 ff.

FRANCE

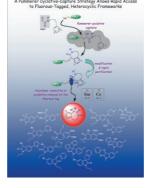
POLAND

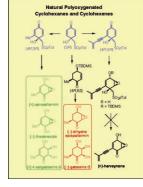
CZECH



SWEDEN

Chemistry—A European Journal is jointly owned by the 14 Chemical Societies shown above and published by Wiley-VCH. This group of Societies has banded together as the **Editorial Union of Chemical Societies (EU** ChemSoc) for its combined publishing activities.




Hydrophobic Dipeptides

In the Concept article on page 1022 ff., C. H. Görbitz describes how hydrophobic dipeptides are readily available, versatile building blocks for construction of microporous materials by supramolecular self-assembly. Different families of hydrophobic dipeptides have different channel properties, which might allow for useful applications in gas storage, selective absorption, and as model compounds for membrane channels.

Fluorous-Phase Synthesis

In their Full Paper on page 1032 ff., D. J. Procter et al. report on the synthesis of tagged, heterocyclic frameworks. Key features of this sequence involve a new Pummerer process used in a fluorous, cyclative-capture strategy, modification of the fluorous, heterocyclic scaffolds by using a variety of approaches including Pd-catalyzed cross-couplings, and traceless reductive or oxidative removal of the fluorous-phase tag.

Natural Polyoxygenated Cyclohexanes and Cyclohexenes In their Full Paper on page 1064 ff., M. C. Carreño et al. describe the utilization of (*p*-tolylsulfinyl)methyl-*p*-quinol as a precursor for the synthesis of various natural polyoxygenated cyclohexanes and cyclohexenes (such as those depicted). The reaction proceeded by means of chemo- and stereoselective conjugate additions to cyclohexadienone intermediates.

Chem. Eur. J. 2007, 13, 1011

1011